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ABSTRACT
Background The purpose of this review is to 
summarize the data available for the role of angiography 
and embolization in the comprehensive multidisciplinary 
management of brain arteriovenous malformations 
(AVMs
Methods We performed a structured literature 
review for studies examining the indications, efficacy, 
and outcomes for patients undergoing endovascular 
therapy in the context of brain AVM management. We 
graded the quality of the evidence. Recommendations 
were arrived at through a consensus conference of the 
authors, then with additional input from the full Society 
of NeuroInterventional Surgery (SNIS) Standards and 
Guidelines Committee and the SNIS Board of Directors.
Results The multidisciplinary evaluation and treatment 
of brain AVMs continues to evolve. Recommendations 
include: (1) Digital subtraction catheter cerebral 
angiography (DSA)—including 2D, 3D, and reformatted 
cross- sectional views when appropriate—is 
recommended in the pre- treatment assessment of 
cerebral AVMs. (I, B- NR). (2) It is recommended that 
endovascular embolization of cerebral arteriovenous 
malformations be performed in the context of a complete 
multidisciplinary treatment plan aiming for obliteration 
of the AVM and cure. (I, B- NR). (3) Embolization of 
brain AVMs before surgical resection can be useful 
to reduce intraoperative blood loss, morbidity, and 
surgical complexity. (IIa, B- NR). (4) The role of primary 
curative embolization of cerebral arteriovenous 
malformations is uncertain, particularly as compared with 
microsurgery and radiosurgery with or without adjunctive 
embolization. Further research is needed, particularly 
with regard to risk for AVM recurrence. (III equivocal, 
C- LD). (5) Targeted embolization of high- risk features of 
ruptured brain AVMs may be considered to reduce the 
risk for recurrent hemorrhage. (IIb, C- LD). (6) Palliative 
embolization may be useful to treat symptomatic AVMs 
in which curative therapy is otherwise not possible. (IIb, 
B- NR). (7) The role of AVM embolization as an adjunct 
to radiosurgery is not well- established. Further research 
is needed. (III equivocal, C- LD). (8) Imaging follow- up 
after apparent cure of brain AVMs is recommended to 
assess for recurrence. Although non- invasive imaging 
may be used for longitudinal follow- up, DSA remains the 
gold standard for residual or recurrent AVM detection in 
patients with concerning imaging and/or clinical findings. 
(I, C- LD). (9) Improved national and international 
reporting of patients of all ages with brain AVMs, their 

treatments, side effects from treatment, and their long- 
term outcomes would enhance the ability to perform 
clinical trials and improve the rigor of research into this 
rare condition. (I, C- EO).
Conclusions Although the quality of evidence is lower 
than for more common conditions subjected to multiple 
randomized controlled trials, endovascular therapy has 
an important role in the management of brain AVMs. 
Prospective studies are needed to strengthen the data 
supporting these recommendations.

INTRODUCTION
Brain arteriovenous malformations (AVMs), though 
rare, represent some of the most formidable and 
complex lesions encountered in neurovascular 
practice and can be the cause of morbidity and 
mortality.1 2 Ruptured or unruptured, brain AVMs 
are the focus of considerable debate regarding 
optimal management.3 In some instances, the 
decision for treatment can be controversial. The 
purpose of this review is not to address the deci-
sion on whether or not to treat, since this has been 
discussed extensively elsewhere in the medical liter-
ature.4 The goal of this review is to serve as an over-
view of the available treatment modalities and their 
associated outcomes with a focus on the relation-
ship of endovascular therapy to other modalities 
involved in comprehensive brain AVM manage-
ment. Recommendations are provided based on the 
level of medical evidence.

METHODS
We systematically reviewed the literature for manu-
scripts with the key words ‘brain’ and ‘AVM’ or 
‘arteriovenous malformation’ as well as any of the 
following: ‘natural history’, ‘imaging’, ‘manage-
ment’, ‘treatment’, ‘surgery’, ‘endovascular’, 
‘embolization’, ‘radiosurgery’, ‘radiotherapy’, 
‘medical therapy’, ‘drug therapy’, ‘standards’, or 
‘guidelines’. These terms were chosen to pull in 
a broad representation of the literature on brain 
AVMs and their treatment. Individual members 
of the Society of NeuroInterventional Surgery 
(SNIS) Standards and Guidelines Committee (S&G 
Committee) AVM writing group reviewed specific 
topic areas that form the basis for the narrative 
sections and recommendations below. The writing 
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group graded evidence using the Oxford Centre for Evidence 
Based Medicine guidelines5 and the American Heart Association 
guidelines,6 with the latter being applied to recommendations. 
The writing group authors presented their findings to the entire 
S&G Committee to refine recommendations. Subsequent review 
of the draft guidelines was performed by the SNIS Board of 
Directors before submission for peer review by the Journal of 
NeuroInterventional Surgery (JNIS).

DIAGNOSTIC AND PRE-TREATMENT IMAGING OF BRAIN 
AVMS
Brain AVMs have several angioarchitectural and geographic 
features that help to predict likelihood of future rupture, iden-
tify source of current hemorrhage, and probable morbidity of 
treatment.7–13 Angioarchitectural features, including feeding 
artery aneurysms, nidus aneurysms, large- caliber arteriovenous 
fistulous connections, and venous outflow stenoses, can be visu-
alized to lesser or greater degrees by non- invasive imaging such 
as MR angiography (MRA) and CT angiography (CTA).14 15 
Digital subtraction angiography (DSA), given its higher spatial 
and temporal resolution, remains superior to non- invasive 
modalities in identifying relevant AVM angioarchitectural 
features as compared with non- invasive modalities.16 17 Planar 
2D-DSAwithhighimagingrates(≥7.5framespersecond)can
sort out the order in which vessels fill even in high- flow situ-
ations. Volumetric 3D- DSA and time- resolved 4D- DSA offer 
additional structural and combined structural/temporal infor-
mation, respectively, and can be reformatted in cross- sectional 
views that better localize the AVM relative to other anatomical 
structures.18–22 The vessel- selective nature of catheter- based 
DSA enables the operator to precisely identify individual arterial 
inputs to the brain AVM; vessel- selective arterial spin- labeling 
MRA may provide lower- resolution information regarding AVM 
feeders.23 MRI offers the greatest soft tissue anatomical reso-
lution. Fusion between 3D- DSA and 3D- volumetric MRI has 
been posited to be the best combined technique for localizing 
and stratifying the natural history risk and treatment risk in 
brain AVMs, particularly when combined with clinical informa-
tion about existing symptoms due to adjacency of the AVM or 
hemorrhage to eloquent functional regions of the brain.24 Simi-
larly, functional MRI may assist in mapping eloquent regions of 
the brain that may have shifted location due to a nearby AVM.

RECOMMENDATION 1: Digital subtraction catheter cerebral 

angiography (DSA)—including 2D, 3D, and reformatted cross- 

sectional views when appropriate—is recommended in the pre- 

treatment assessment of cerebral AVMs. (I, B- NR)

MODALITIES FOR TREATMENT OF BRAIN AVMS
Once the decision for AVM treatment has been made, neuro-
vascular centers typically determine whether single modality 
or multimodality treatment will be most appropriate. The first 
consideration is whether the AVM is ruptured or unruptured, as 
this not only affects the risk of future rupture but also the treat-
ment technique. The goal of treatment—AVM cure (ie, elimi-
nation of the nidus and arteriovenous shunting) versus partial 
treatment with targeting of a high- risk feature in AVMs that does 
not appear amenable to cure versus palliation of AVM- related 
symptoms—is a critical up- front discussion point between the 
patient and the treating team. Angioarchitecture (AVM nidus size, 
presence of feeding artery aneurysms, presence of nidus aneu-
rysms, large caliber arteriovenous fistulas), location (eloquent 
vs non- eloquent, deep vs superficial), and local modality- based 
expertise (microsurgical, endovascular, and radiosurgical) are all 

key factors to take into account in developing a comprehensive 
and appropriate treatment plan.25

RECOMMENDATION 2: It is recommended that endovascular 

embolization of cerebral AVMs be performed in the context of a 

complete multidisciplinary treatment plan aiming for obliteration 

of the AVM and cure. (I, B- NR)

MICROSURGERY
Microsurgical resection offers the most validated approach to 
complete removal of the brain AVM nidus, thereby reducing 
future morbidity or mortality risks.26 27 Surgical management 
steps now follow a sequence of steps based on the 3D mapping 
of the lesion and visualization or rendering tools and, in some 
complex cases, 3D printed models to allow for planning and 
rehearsal. Combined image sets, including CT and catheter 
angiogram scans, in addition to MR images, are used to plan 
the dissection strategy about the hematoma cavity. Functional 
cortices are anatomically mapped about the nidus, and the 
locations of the deep white matter feeders are noted. Sequen-
tial management and disconnection of the feeding arteries in a 
circumferential fashion ensues, leaving the draining veins alone. 
Intraoperative fluorescence angiography can also be useful in 
demonstrating the timing of flow and the vessel’s character. The 
dissection typically proceeds in a circumferential or spiral- like 
fashion to expose every aspect of the AVM toward its apex, 
which is often located near the ventricular ependyma. Naviga-
tion based on preoperative imaging may be helpful here to main-
tain direction in the deep aspects of the lesion. After completing 
the disconnection of all feeders from the pial, parenchymal, and 
ependymal surfaces, the vein can finally be disconnected and the 
entire nidus removed.

In a post- ARUBA28 world (ARUBA: A Randomised trial of 
Unruptured Brain Arteriovenous malformations), there are 
sparse data to guide us when looking for microsurgical resec-
tions’ contemporary efficacy. Schramm and co- workers demon-
strated a permanent new deficit of 7.7% in 104 ARUBA eligible 
patients (none of whom underwent preoperative embolization) 
and no treatment- related mortality at a mean follow- up of 5.3 
years.29 This is noticeably lower than the morbidity in either 
ARUBA arm over a shorter follow- up duration of 2.8 years 
(medical 10.1% and treatment 30.7%).

The original surgical classification by Spetzler and Martin 
remains valid,30 as do elaborations thereof.31 32 Low- grade 
AVMs (grade I and II) had less than half the morbidity compared 
with higher grades (3.2% vs 7.7%).28 29 A study by Wong et al33 
analyzed a cohort treated with microsurgery and found similar 
results and an observed association of poor outcome to intra-
operative blood loss. They suggest that even in lower grade 
AVMs, adjunctive embolization should be considered to achieve 
less intraoperative blood loss.33 Spetzler- Martin (SM) grade III 
AVMs make up a broader group with four subtypes—S1E1V1, 
S2E0V1, S2E1V0, and S3E0V0—and multiple attempts have 
been made to delineate the risk of this grade in a nuanced 
way.34 35 While there is no clear evidence that the risk of hemor-
rhage meaningfully differs for grade III AVMs from the approx-
imate 2.2% per year baseline natural history risk of rupture for 
brain AVMs in general,36 the surgical risk increases with the 
grade. The morbidity for grade III appears to exceed the median 
for all AVMs together, resulting in the demarcation of grade III 
and higher AVMs as a high- risk surgical group.

ENDOVASCULAR EMBOLIZATION OF BRAIN AVMS
Embolization is an important component of the multidisci-
plinary care of brain AVMs and it may be performed in a range 
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of scenarios, each with differing intended angiographic and clin-
ical endpoints.37 For unruptured brain AVMs, it is recommended 
that embolization be performed in the context of a comprehen-
sive treatment plan determined by a multidisciplinary team. The 
most common application of embolization in the unruptured 
setting is as an adjunct to microsurgical resection or to reduce 
nidus size to <3 cm to facilitate stereotactic radiosurgery (SRS). 
Palliative embolization can be employed for inoperable lesions 
that are not amenable to radiosurgery where longstanding 
venous hypertension or vascular steal has resulted in ischemic 
neurological deterioration and morbidity. Curative embolization 
is often reserved for small to medium sized, superficial lesions 
with compact nidal architecture supplied by one or two arterial 
feeders with drainage to an equally limited but well delineated 
venous network. More recently, however, newer techniques 
may allow angiographic cure for larger or more complex deep 
brain AVMs (SM >3), being pioneered in certain high- volume 
centers. In particular, transvenous embolization may lead to a 
broader application of endovascular therapy in more complex 
and deeper- seated lesions that are neither amenable to multi-
modal therapies nor stand- alone microsurgery or SRS.38

Endovascular therapy in the acute setting
Certain angiographic and structural features of brain AVMs 
are associated with an increased risk of recurrent hemorrhage, 
leading to a preference among some practitioners to treat at least 
the high- risk feature relatively early after presentation.39–43 In 
an acutely ruptured AVM, endovascular treatment can occlude 
intra- nidal or flow- related aneurysms when determined to be the 
likely source of bleeding, especially when correlated with the 
pattern of hemorrhage on cross- sectional imaging.39 44–46 Signo-
relli et al reported treatment- related morbidity and mortality 
rates of 4% and 0%, respectively, in a 25 patient series where 
intranidal aneurysms associated with an acutely ruptured AVM 
were targeted and occluded. Alternatively, when a culprit aneu-
rysm cannot be identified, or when the bleed is thought to be 
secondary to a venous stenosis or hypertension, partial transar-
terial nidal embolization can be attempted to decrease the arte-
riovenous shunting flow through the lesion. Nidal compression 
or other angioarchitectural distortion from mass effect of an 
adjacent hematoma can lead to underestimation of true nidus 
size and morphology. For this reason, embolization with intent 
for cure in the acute setting most likely has an increased risk for 
delayed recurrence.

Endovascular therapy in the elective setting
Preoperative embolization
The goal of preoperative embolization is to perform endovas-
cular ligation of the arterial pedicles at the brain AVM margins 
and deep compartments of the expected surgical exposure and/
or partial embolization of the nidus to facilitate safe and effective 
resection, reduce intraoperative blood loss, and mitigate the risk 
of normal perfusion pressure breakthrough postoperatively. The 
latter phenomenon is thought to be related to loss of localized 
cerebral autoregulation from chronic vasodilation of the perin-
idal microcirculation, which can result in symptomatic cerebral 
edema, seizures, and/or intracranial hemorrhage.47 Preoperative 
embolization is dependent on the location, size, and angioar-
chitecture of the brain AVM.38 Embolization of deep arterial 
feeders or those feeders that are most difficult to access surgically 
may offer more benefit than targeting feeders that can be easily 
accessed surgically. Embolization may be staged or performed in 
a single session, and has shown added benefit with an acceptable 

risk profile in SM grade 3 and 4 lesions.48 Luzzi et al described 
outcomes in 27 SM grade 3 AVMs where preoperative emboli-
zation was performed on average of 3.7 days before resection, 
citing intraoperative hemostasis and ease of identification of the 
target lesion as benefits. An embolization- related morbidity rate 
of 3.7% was noted and there were no procedural mortalities. 
An embolization grading scale that incorporates the number of 
feeding arteries, eloquence, and the presence of fistulas within 
the AVM nidus has also been developed to predict endovascular 
or multimodality cure based on a single large institution expe-
rience.49 At present, the optimal timing of embolization before 
surgery is unclear as is the optimal embolic agent.50

RECOMMENDATION 3: Embolization of brain AVMs before 
surgical resection can be useful to reduce intraoperative blood loss, 

morbidity, and surgical complexity. (IIa, B- NR)

Embolization to cure
Embolization with intent for angiographic cure is, in most 
centers, reserved for small to medium size lesions with compact 
niduses, often supplied and drained by limited arterial and 
venous pedicles from a single vascular territory. Case series using 
these criteria (SM I, II and III) have been published showing 
occlusion rates of up to 96% with low complication rates when 
conducted in high volume centers.51–54 Katsaridis et al identi-
fied 101 patients who underwent a total of 219 sessions of 
embolization over a 4 year period. Treatment was concluded in 
52/101 patients of which 28 achieved total AVM occlusion. The 
remaining 49 patients were planned to undergo further embo-
lization at the time of publication. Procedural morbidity and 
mortality rates were reported as 8% and 3%, respectively. In 
contrast, Iosif et al achieved 95% angiographic cure rates with 
procedure- related morbidity and mortality rates of 2.7% and 
0%, respectively, in their series of 73 consecutive patients who 
underwent embolization with curative intent for ruptured and 
unruptured SM 1 and 2 AVMs between 2008 and 2016 in their 
institution. A systematic review published in 2019 by Wu et al 
identified 15 studies comprising 597 patients with 598 AVMs. 
An angiographic cure rate of 58.3% was reported with overall 
clinical complication and procedure- related mortality rates of 
24.1% and 1.5%, respectively. These data highlight the vari-
ability in efficacy and safety of the curative approach between 
institutions, raising the concern over procedural volume and 
the need for patents to be managed in ‘centers of excellence’ to 
achieve optimum outcomes.

Ethylene- vinyl alcohol (EVOH) copolymer based liquid 
embolic agents, dimethyl sulfoxide (DMSO) compatible balloon 
microcatheters, and detachable tip microcatheters combined 
with more advanced endovascular methods, such as the ‘pressure 
cooker technique’, have facilitated increased complete oblitera-
tion rates through the ability to achieve prolonged, controlled 
injections of liquid embolic agents.38 In a meta- analysis EVOH 
had a higher AVM cure rate than n- butyl cyanoacrylate (n- BCA), 
but also had a higher procedural complication rate.55

Transvenous embolization
More recently, a limited number of series have been published 
describing outcomes for embolization to cure using the transve-
nous approach. These series have demonstrated high complete 
occlusion rates and reasonably low complication rates.56–61 
Proposed indications for this approach include a small (diam-
eter <3 cm) and compact AVM nidus, deep or eloquent AVM 
location, hemorrhagic presentation, single draining vein, inac-
cessible arterial pedicles, exclusive arterial supply by perforators, 
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or en passage feeding arteries. A smaller number of high- volume 
centers describe this technique in the staged, curative treatment 
of large and high SM grade brain AVMs that are deemed other-
wise inoperable.62 63 In 2015, Iosif et al reported a procedural 
mortality rate of 0% and angiographic cure of 95% at 6 months 
in 20 patients with high grade (90% SM III–V) AVMs treated 
with transvenous embolization. The same group published a 22 
patient series in 2022 demonstrating safety and efficacy with 
temporary arterial flow arrest using balloon microcatheters 
during transvenous embolization of high grade AVMs. Complete 
AVM occlusion at angiographic follow- up was achieved in all 22 
patients, with procedural morbidity and mortality rates of 4.5% 
and 0%, respectively.64 A larger series published in 2021 by 
Koyanagi et al using the transvenous ‘pressure cooker technique’ 
reported high AVM occlusion rates with no procedure- related 
mortality in 51 patients with predominantly high grade AVMs 
(SM grade III–V in 71%). Three patients experienced intracra-
nial hemorrhage related to the procedure (6%) with perma-
nent neurological deficits in one patient at last follow- up (2%). 
Evaluating the safety, efficacy and durability of transvenous 
AVM embolization is challenging due to the limited number of 
published cases and relatively short term follow-up.

RECOMMENDATION 4: The role of primary curative 

embolization of cerebral AVMs is uncertain, particularly as 

compared to microsurgery and radiosurgery with or without 

adjunctive embolization. Further research is needed, particularly 

with regard to risk for AVM recurrence. (III equivocal, C- LD)

Targeted or palliative embolization in the elective setting
Targeted and palliative embolization are strategies to decrease 
the morbidity and mortality risk of an untreatable AVM without 
complete obliteration. Elective embolization of high- risk features 
in unruptured AVMs specifically includes arteriovenous fistulae 
and flow- related or nidal aneurysms to prevent subsequent AVM 
rupture.26 Occasionally, large and high flow AVMs may become 
symptomatic and cause ischemic neurological deficits secondary 
to chronic venous hypertension and vascular steal from adjacent 
compromised tissue. Symptoms may present as progressive or 
abrupt focal deficits, seizures, and cognitive decline that can 
mimic dementias or neurodegenerative diseases. Feeding artery 
aneurysms have been associated with an increased incidence of 
subarachnoid hemorrhage at presentation, though not an overall 
increased AVM rupture risk in a recent 25 year single institution 
cohort.65 Another recent large single institution series, however, 
has associated feeding artery aneurysms in the posterior fossa 
with a higher incidence of posterior fossa hemorrhage, though 
this was not differentiated between subarachnoid, intraventric-
ular, and intraparenchymal locations.66 Although published data 
are limited, targeted embolization of high flow fistulae and/or 
nidal flow reduction may arrest clinical decline and improve the 
quality of life.67–74

RECOMMENDATION 5: Targeted embolization of high- 

risk features of ruptured brain AVMs may be considered 

to reduce the risk for recurrent hemorrhage. (IIb, C- LD)

RECOMMENDATION 6: Palliative embolization may 

be useful to treat symptomatic AVMs in which curative 

therapy is otherwise not possible. (IIb, B- NR)

Embolization as an adjuvant to radiosurgery
Embolization has been utilized to reduce the size of an AVM 
nidus to <3 cm to facilitate radiosurgery and render an 

otherwise high- grade lesion curable. Early experience showed 
embolization before radiosurgery to be least successful in diffuse 
nidus- type AVMs, and if the arterial feeders were embolized with 
absorbable embolic agents such as polyvinyl alcohol (PVA) parti-
cles.75 For this reason, embolization with n- BCA or EVOH based 
liquid embolic agents is considered superior. However, there 
remains controversy regarding the use of EVOH based liquid 
embolic agents and the potential to decrease SRS effectiveness 
due to inaccurate contouring and radiation planning secondary 
to CT/MR and even DSA imaging artifacts, although these may 
increasingly be addressed with metal artifact reduction soft-
ware.76 Conflicting data have been published both supporting 
and refuting the concern that adjunctive embolization before 
SRS leads to increased rates of AVM recurrence.77–79 Some 
groups have also reported using embolization to reduce flow 
through large- bore fistulous components of AVMs following 
radiosurgery.80

Risks and complications associated with embolization
The potential risks of embolization—whether in the context of 
intended cure or as an adjunct to other treatment modalities—
are significant. Treatment plans for AVMs should be managed 
in a multidisciplinary setting, and the risks of staged, adjunctive 
or curative embolization should be balanced against those of the 
other established treatment modalities of microsurgical resection 
or SRS.81 Individual and institutional case volume and exper-
tise should also be taken into consideration when a management 
plan is being determined. In a large series collated over a 17 
year timeline, Crowley et al reported a permanent procedure- 
related neurological morbidity rate of 9.6% and mortality rate of 
0.3%.82 In their series of 342 AVMs (mean SM grade 3) treated 
with 446 sessions of embolization, the main treatment strategy 
was as an adjunct to surgery (78.9%). Embolization with curative 
intent was only performed in 2.3% of cases. Interestingly, SM 
grade was not associated with a difference in outcome following 
embolization.

Ischemic complications from embolization are secondary to 
catheter- or procedure- related thromboembolism, non- target 
arterial occlusion, or venous penetration. Hemorrhagic outcomes 
are thought to arise from intraprocedural nidal rupture or iatro-
genic vessel perforation.83 Early and subacute hemorrhagic 
complications or AVM rupture postoperatively have been well 
described and likely result from inadvertent occlusion of the 
draining venous system before complete nidal obliteration, an 
abrupt alteration of intra- nidal flow dynamics after partial or 
staged embolization, or normal perfusion pressure breakthrough 
as described above.50 As with surgical resection, blood pressure 
monitoring and control in the postoperative period are critical.38

STEREOTACTIC RADIOSURGERY
The role of SRS in the management of brain AVMs has matured 
substantially in the years since Larsen and Leksell first devel-
oped the techniques for functional neurosurgery in the 1950s.84 
From its first stereotactic angiography- based localization and 
planning in 1972, SRS’s place in the armamentarium of treat-
ment options for ruptured and unruptured AVMs continues to 
develop. Over the last half- century, SRS has grown from treating 
a near- spherical nidus of <10 mL for cure to staged, fractionated 
protocols that specifically target angioarchitectural lesions for 
palliation. With modern techniques of localization to near sub- 
millimeter precision, integration of several modalities (including 
DSA, CTA, and MRI with diffusion tensor imaging), and careful 
beam shaping technology through the gamma knife or multi- 
leaf collimation by linear accelerators and other devices, lesions 
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thought surgically untreatable can now be successfully treated 
with acceptable risk.

Of the several risks that are unique to the treatment of ruptured 
AVMs with SRS, the treatment’s latency period of 2–4 years is 
of particular concern. With a suggested risk of re- hemorrhage 
of 6% during the first year post- ictus and a roughly 2–4% per 
year risk of rupture in subsequent years, the roughly cumulative 
15–20% risk of re- rupture in the 4 years post- SRS gives pause 
for lesions that can be safely accessed and treated via surgical 
corridors.78 79 85 AVMs treated with SRS may also hemorrhage as 
their final event at the time of obliteration.86

Role of stereotactic radiosurgery in the setting of 
endovascular management
Consequently, the use of endovascular therapy for difficult- to- 
access lesions or lesions that carry high surgical morbidity (eg, 
brain stem or periventricular) has been considered as a potential 
adjunct to SRS in order to reduce this risk of re- rupture, espe-
cially when noted angioarchitectural weaknesses are defined on 
imaging and can be successfully approached through endovas-
cular therapy. Additionally, the use of endovascular techniques 
to effectively ‘sculpt’ the nidus to a geometry and volume that 
can respond best to SRS in an unruptured AVM has also been 
assessed. This role of endovascular therapy as an adjunct to 
SRS (or some might suggest SRS as an adjunct to endovascular 
therapy) has been variably studied with somewhat controversial 
results.

Adjunct to cure by reducing AVM volume or shape conformation
There are several case series that suggest pre- radiosurgery embo-
lization results in a higher cure rate.87 The presumptive effect of 
embolization for this indication is to reduce the overall volume 
(and in earlier times, increase spherical conformability) subject 
to SRS in order to increase the obliteration rate while decreasing 
the effects of radiation on the surrounding, sometimes eloquent, 
parenchyma.88–91 Hence, the majority of these series evaluated 
the use of this combination in the setting where SRS alone 
would carry a lower potential for cure given the larger size of the 
malformation. In a case–control study, Kano et al evaluated 120 
patients who underwent at least one embolization before SRS, 
with 53% of the patients in this study presenting with rupture.88 
Though the series suggested that AVM embolization reduced the 
likelihood of cure, perhaps by making the shape of the residual 
nidus more irregular and difficult to target, the 20 year span 
of the study is subject to several confounders, among which 
is the change in embolization techniques and embolic agents 
used. Marks et al retrospectively reviewed 91 patients with a 
median nidus volume of 18.8 mL.77 Pre- radiosurgery emboliza-
tion reduced the median volume to 9.9 mL. Median radiation- 
based AVM scores decreased from 2.6 mL to 1.8 mL with a p 
value of 0.00003. Forty of 72 patients with 3 year follow- up 
had complete cure with good neurological outcome, 30 had 
residual AVMs, and two died of re- hemorrhage. The authors 
noted that the 4 year outcomes had improved, with improved 
mRS compared with similar- sized AVM with radiosurgery alone. 
Andrade- Souza et al, however, performed a matched analysis of 
47 patients undergoing embolization and radiosurgery with 47 
patients undergoing radiosurgery alone as matched by a number 
of factors.90 In contradistinction, they found that embolization 
reduced the successful obliteration by SRS. Though the volumes 
in this study were case- matched post- embolization, it is unclear 
whether there were confounding factors that could portend a 
lower success rate. In Blackburn et al’s series, they noted that 

error in targeting may have accounted for failures to oblit-
erate the AVM post- staged embolization and radiosurgery.91 A 
second case–control study by Oermann et al may suggest that, 
as observed in their analysis, malformations undergoing embo-
lization and SRS have more feeding arteries, draining veins and 
a greater angioarchitectural complexity that may make radiosur-
gical success or even endovascular mapping and treatment more 
complex.92

There are several other potential confounders to the endovas-
cular treatment of an AVM as an adjunct to SRS. Though geom-
etry modification, elimination or reduction of angioarchitectural 
weaknesses and overall size reduction of the nidus are clear and 
definable goals, the embolisate itself may act to mask the delinea-
tion of an appropriate target lesion volume. In prior years when 
the use of tantalum for n- BCA was standard, the attenuation 
artifact rendered stereotactic planning difficult. Consequently, 
the planning for the lesion remained focused on the initial AVM 
geometry, which thus did little to affect adverse events or resulted 
in lower cure rates if the smaller volume was targeted. Several 
analyses have demonstrated no significant difference in re- hem-
orrhage risk in patients who underwent prior embolization for 
lesions that underwent SRS when compared in the literature.93 
A systematic assessment of the factors affecting re- hemorrhage 
has been difficult.

Differences in outcomes relative to embolisate use
There has been a significant focus on the concept that SRS 
dosing is attenuated by the embolisate (especially when 
tantalum is included in the embolisate). In so doing, the ‘full’ 
dose of each beam or beam- arc is reduced, thus affecting 
the effective dose to the AVM nidus. The data comparing 
the outcomes of pre- radiosurgery embolization with respect 
to the embolisate used have not been well studied. Many 
confounders exist with respect to technique, attenuation 
characteristics and perhaps the inherent qualities of the 
embolisates.94 95 Some studies have suggested that the thick-
ness of EVOH (with its tantalum particles serving as an 
opacifying agent) may attenuate the dose beam and affect 
outcomes. Roberts et al suggest that this attenuation may be 
negligible in 3D targeting and planning95; similar dosimetric 
studies have been performed for n- BCA with and without 
tantalum.96 As an example, the cohesive nature of EVOH 
may render embolized vessels partly patent (as has been noted 
during surgical resection of the lesions). Hence, the goal of 
EVOH use in volume reduction SRS may not be feasible and 
may thus adversely affect cure rates, if radiosurgeons target 
the ‘filling volume’ on angiography. Conversely, the adhesive 
nature of n- BCA greatly reduces the patency of the treated 
pedicle and may thus help to reduce the filling volume of an 
AVM. However, an inability to establish fine control over the 
deposition of the n- BCA cast may adversely affect the ability 
to ‘sculpt’ an ellipsoidal or spherical geometry that may be 
more amenable to SRS.95 96

RECOMMENDATION 7: The role of AVM embolization as an 

adjunct to radiosurgery is not well- established. Further research is 

needed. (III equivocal, C- LD)

EMERGING ROLE OF MEDICAL THERAPY
There are two subgroups of AVM patients with known under-
lying genetic disorders: hereditary hemorrhagic telangiec-
tasia (HHT) (Eng, Alk1, and SMAD4 gene mutations) and 
capillary malformation–arteriovenous malformation (CM- 
AVM) syndrome (RASA1 gene mutations).97–103 As it relates 
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to HHT, a number of medical therapies have been or are in 
use to manage the manifestation of AVM pathophysiology 
outside the central nervous system (CNS).104–107 The tetra-
cycline antibiotic doxycycline has been demonstrated to be a 
vascular membrane stabilizer, via alteration in matrix metal-
loproteinase (MMP) expression, and there is evidence from 
animal studies that it might be effective in reducing bleeding 
risk in AVMs.108–111 There are small series describing its use 
in humans, with no serious adverse effects noted, but also no 
significant evidence of clinical efficacy or hemorrhagic risk 
reduction. Another vascular membrane stabilizer, thalidomide 
and its related compounds, has also been used, though largely 
to reduce the severity and frequency of epistaxis in HHT 
patients.105–107 There is no evidence as to its effect on sporadic 
AVMs within the CNS. The anti- VEGF (vascular endothelial 
growth factor) medication bevacizumab has also been studied 
in animal and humans and proven effective, particularly for 
HHT patients with high- flow hepatic AVMs as well as for 
epistaxis.112–116 There are two case reports of the prospec-
tive use of bevacizumab for sporadic brain AVMs.117 In both 
instances no serious adverse events were noted, though the 
lesions did not change in size during the study interval.

The majority of AVMs, however, are considered sporadic 
and without a defined set of abnormal gene defects. More 
recently there have been a number of publications impli-
cating RAS and the RAS- related gene family (eg, BRAF, KRAS, 
MAPK) in these sporadic cases118–124 with 50–60% of cases 
demonstrating such mutations.118 Based on these revela-
tions, alternative biologics are being used for complex AVM 
cases.125 There are two case reports of the use of the MEK 
inhibitor trametinib for biopsy- proven, KRAS- positive chest 
wall AVMs, one which demonstrated a significant reduction 
in the cardiac output fraction to the lesion after 6 months of 
treatment.126 127 There are plans for a formal trial evaluation 
of this strategy for patients with non- CNS AVMs in the near 
future. Should the genetic identity of the AVMs prove conse-
quential in the safety and efficacy of such targeted molecular 
therapies, a premium on tissue collection becomes central to 
management. For peripheral AVMs this may be problematic 
due to bleeding concerns, but manageable with conventional 
biopsy methods, while for CNS AVMs such open surgical 
biopsy is not possible due to the risks of stroke. As such, 
investigators have demonstrated a method to safely and 
accurately collect cells using endovascular means for AVM- 
specific genetic diagnosis.128–131 This technique may prove 
instrumental in determining which cases will most favorably 
respond to certain therapies, medical or otherwise, in addi-
tion to more generally expanding our understanding of the 
molecular genetics of secondary vascular disorders.

SPECIAL POPULATIONS
Treatment of brain AVMs in infants and children
This review does not address treatment for all brain arterio-
venous shunting lesions in children, but instead is focused on 
brain AVMs with a nidus. Specifically, vein of Galen malfor-
mations, non- Galenic pial arteriovenous fistulas, and dural 
arteriovenous fistulas—which have varied presentations, 
sometime massive arteriovenous shunting, and different treat-
ments—are not included here.132–135 Nidus AVMs in children 
can be approached in similar fashion to those in adults, with 
a few caveats.136–139 The low blood volume of small children 
can make microsurgery more risky before the age of 3 years 
than thereafter. About 80% of head growth occurs by age 
3, and 90% by age 5, making all types of treatments more 

similar to adult treatments as children become older. For SRS, 
in particular, gamma knife stereotactic frames may not easily 
fit to a young child’s head, potentially limiting this type of 
SRS under about the age of 5. X- ray exposure from long fluo-
roscopy times for embolization procedures in young children 
should also be taken into account.140

Treatment of brain AVMs in patients with HHT
Patients with HHT can have several types of cerebral vascular 
malformations, including true nidus- type AVMs.16 99 The 
demonstration of multiple brain AVMs is highly suggestive 
of a diagnosis of HHT.141 It is unclear if AVMs in HHT have 
an equivalent risk for hemorrhage as sporadic brain AVMs.142 
However, given that AVMs of all sizes have the potential for 
hemorrhage, centers that treat patients with HHT should also 
consider whether or not to offer treatment for their brain AVMs, 
whether ruptured or unruptured.143 Microsurgery can be an 
attractive option for small HHT- related AVMs that come to or 
near the surface of the brain.144 Similarly, SRS may have a high 
rate of cure for the smaller AVMs often seen in HHT. Emboliza-
tion is more often reserved for arteriovenous fistulas or fistulous 
components of HHT- related AVMs.

RECURRENCE AFTER TREATMENT AND FOLLOW-UP 
STRATEGIES
Recurrence after brain AVM treatment is an important consid-
eration, as recurrence of a brain AVM puts the patient at risk 
for future hemorrhage. Residual AVM nidus or arteriovenous 
shunting identified on DSA following microsurgical resection, 
embolization, SRS, or combination therapy is an indication for 
additional therapy.145 Once an AVM appears to be obliterated 
on a post- treatment DSA, it is unclear what the optimal imaging 
follow- up strategy should be. Pediatric patients, in particular, 
have been reported to have recurrence of apparently cured 
brain AVMs; such recurrences may be more common in younger 
patients who have presented with ruptured AVMs as opposed to 
unruptured AVMs.146–150

Imaging follow- up after apparent cure of brain AVMs is 
recommended in order to assess for recurrence. MRI/MRA 
techniques including arterial spin labeling,151 due to lack of 
ionizing radiation, may be preferred for screening in cases with 
a low suspicion for recurrence (eg, adults following resection 
of non- ruptured AVMs near the surface of the brain), with 
DSA follow- up reserved for follow- up of patients at higher 
risk for recurrence and for those with concerning findings 
on screening MRI/MRA. Centers involved in the treatment 
of brain AVMs should define a consistent approach to long- 
term follow- up of patients after apparent angiographic cure 
based on local experience and resources. Approaches differed 
among the SNIS S&G Committee members, but common 
themes included: annual office visits, MRI/MRA at frequen-
cies ranging from annual to every 3–5 years to every decade, 
or CTA at 1 year after apparent cure, 3–4 years after apparent 
cure, and every 5 years long term.

RECOMMENDATION 8: Imaging follow- up after apparent cure 

of brain AVMs is recommended to assess for recurrence. Although 

non- invasive imaging may be used for longitudinal follow- up, DSA 

remains the gold standard for residual or recurrent AVM detection in 

patients with concerning imaging and/or clinical findings. (I, C- LD)

CONCLUSIONS
The roles of surgical, endovascular, radiosurgical, and medical 
treatments need to be tailored to each brain AVM patient, their 
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particular AVM, and their clinical situation. Given the rarity of 
brain AVMs and rapid evolution in the technologies available for 
their treatment, randomized clinical trials beyond ARUBA are 
sparse. Recognizing this landscape of medical evidence, current 
recommendations are made on the basis of less than certain 
data. Centralized databases such as the NeuroVascular Quality 
Initiative- Quality Outcomes Database (NVQI- QOD) registry 
offer the ability to pool data and could support further quality 
improvement and research in the field.152

RECOMMENDATION 9: Improved national and international 

reporting of patients of all ages with brain AVMs, their treatments, 

side effects from treatment, and their long- term outcomes would 

enhance the ability to perform clinical trials and improve the rigor 

of research into this rare condition. (I, C- EO)

Twitter Reade De Leacy @rdeleacymd
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